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ABSTRACT
Pulsar searching is essential for the scientific research in the field of physics and astrophysics.
With the development of the radio telescope, the exploding volume and growth speed of
candidates have brought about several challenges. Therefore, there is an urgent demand for
developing an automatic, accurate, and efficient pulsar candidate selection method. To meet
this need, this work designed a Concat Convolutional Neural Network (CCNN) to identify
the candidates collected from the Five-hundred-meter Aperture Spherical Telescope (FAST)
data. The CCNN extracts some ‘pulsar-like’ patterns from the diagnostic subplots using
Convolutional Neural Network (CNN) and combines these CNN features by a concatenate
layer. Therefore, the CCNN is an end-to-end learning model without any need for any
intermediate labels, which makes CCNN suitable for the online learning pipeline of pulsar
candidate selection. Experimental results on FAST data show that the CCNN outperforms the
available state-of-the-art models in a similar scenario. In total, it misses only 4 real pulsars out
of 326.
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1 INTRODUCTION

Pulsars are rapidly rotating, superdense neutron stars with strong
magnetic fields. The rotation of the pulsar causes the beam of
electromagnetic radiation field to sweep in and out of our line of
sight with an extremely regular period. The theory and observation
of the pulsars are of great significance to promote the development
of physics and astrophysics, such as the evolution of neutron stars
(Helfand & Huang 1987), the equation of state of dense matter
(Backer et al. 1982), verification on general relativity (Hulse &
Taylor 1975; Lyne et al. 2004), etc. In particular, pulsar timing array
(PTA) with dozens of millisecond pulsars can be used to detect and
analyse gravitational waves due to their accurate timing properties
(van Haasteren et al. 2011; Demorest et al. 2012; Manchester et al.
2013). Therefore, it is essential to discover new pulsars to excavate
their enormous potentials for scientific research.

Ever since Jocelyn Bell Burnell and Antony Hewish observed the
first pulsar in 1967 (Hewish et al. 1968), more than 2700 pulsars
have been discovered (Manchester et al. 2005) by the modern radio
telescope survey projects, such as the Parkes Multi-beam Pulsar
Survey (PMPS; Manchester et al. 2001), the Pulsar Arecibo L-band
Feed Array (PALFA; Deneva et al. 2009) survey, LOw-Frequency
ARray (LOFAR) Tied-Array All-Sky Survey (LOTASS; Coenen
et al. 2014), etc. However, astronomers prophesied that the total
number of potentially observable pulsars in the Galaxy should
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be approximately 10 times more than this based on the pulsar
population model (Faucher-Giguere & Kaspi 2006). To search for
more pulsars, some advanced modern radio telescopes will or have
been built, such as the Square Kilometre Array (SKA; Smits et al.
2009) and Five-hundred-meter Aperture Spherical radio Telescope
(FAST; Nan et al. 2011). Specifically, FAST began to be constructed
in 2011 and started formal operations on 2020 January 11 (Mingmei
2020). It is expected to discover about 1500 new normal pulsars and
200 millisecond pulsars (Yue, Li & Nan 2012). In practice, the FAST
19-beam drift-scan survey generates more than one million pulsar
candidates per night (Wang et al. 2019b). However, the proportion of
real pulsars among candidates is exceedingly small (approximately
1 in 10 000; Lyon et al. 2013) due to the presence of radio frequency
interference (RFI) and noise. Therefore, it is seldom to select
the pulsars among the candidates just by using simple metrics
like the signal-to-noise (S/N) ratio. Traditionally, pulsar candidates
selection is completed through inspecting diagnostic plots of the
candidates by human experts, but it is impractical to deal with such
extreme volume of candidates in this way. In other words, there
exist urgent demands for developing an automatic, accurate, and
efficient pulsar candidate selection method.

The goal of the pulsar candidate selection is to minimize the reten-
tion of the non-pulsar signals without missing pulsar candidates as
much as possible, thereby reducing the labor of further observations.
In the past few years, a variety of pulsar candidate selection
methods have been proposed. Based on the principles of a method,
they can be divided into three categories. The first category is of
traditional scoring methods. Lee et al. (2013) ranked the candidates
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according to their scores, which are the linear combinations of six
well-designed quality factors. The second category improved the
methods by applying machine learning (ML) algorithms to learn
how to combine the pre-designed quality factors (usually called
features in ML) instead of the artificial combination (Eatough et al.
2010; Bates et al. 2012; van Leeuwen et al. 2013; Morello et al.
2014; Lyon et al. 2016). In these methods, pulsar candidate selection
was served as a binary classification problem. One of the important
factors affecting the classification result is the feature design that
relies heavily on human experience. An incomprehensive feature
design scheme may have a bad effect on the performance of the
models. For example, some methods extracted six features just
from the pulse profile and dispersion measure (DM) curve. As a
result, it is likely to mistakenly identify some RFI candidates as
pulsars. These misclassified candidates are often generated by RFI
within several frequency channels so that they have the ‘pulsar-like’
appearance in both the pulse profile and DM curve. In practice,
human experts can identify the pulsars from the candidates just by
observing the diagnostic plots successfully. Under this inspiration,
the third category attempts to directly utilize the diagnostic plots as
the inputs into the model instead of hand-crafted features (Zhu et al.
2014; Guo et al. 2019; Wang et al. 2019a,b). These methods prompt
the model to learn the ‘pulsar-like’ patterns from the diagnostic
subplots by themselves through data-driven learning. Zhu et al.
(2014) and Wang et al. (2019b) proposed a two-layer ensemble
model to identify the pulsars. For example, the model in Wang
et al. (2019b) is composed of five classifiers totally, including two
Residual Neural Networks (ResNets), two Support Vector Machines
(SVMs), and one Logistic regression (LR). Two ResNets are used
to determine whether the time versus phase plot and frequency
versus phase plot are ‘pulsar-like’, respectively. Two SVMs evaluate
how ‘pulsar-like’ the pulse profile and DM curve are, respectively.
Finally, the LR classifies the candidates based on the output scores
from the first four classifiers. The first four classifiers constitute a
layer of data processors and this layer is referred to as the first
layer. The LR constitutes the second layer, which receives the
outputs from the first layer. However, the label of the first layer
(the labels of each diagnostic subplot) may not be in accordance
with the candidates’ label. In other words, the subplots of some RFI
candidates may be the same as those of the pulsars. As a result,
we have to manually label whether each of the four subplots is
‘pulsar-like’ individually for every training data, leading to a lot of
extra labour.

In this work, we propose a novel deep learning scheme, Concat
Convolutional Neural Network (CCNN), for the pulsar candidate
selection based on Convolutional Neural Network (CNN). In this
proposed model, a concatenate layer is introduced to replace the
second layer of the PICS or PICS-ResNet for overcoming the
problem of the non-correspondence between the candidate’s nature
(the candidate is pulsar or not) and the labels of each diagnostic
subplot (the subplot is ‘pulsar-like’ or not). In addition, the CCNN
extracts the features from four diagnostic subplots only using
the CNN: one-dimensional (1D) CNN for the pulse profile and
DM curve while two-dimensional (2D) CNN for the time versus
phase plot and frequency versus phase plot. In application, 2D-
CNN has shown its outstanding ability to deal with image pattern
recognition and, at the same time, 1D-CNN has been proved that
it is adept at signal processing and recognition (Huang et al.
2019). Therefore, the CNN for extracting features rather than
the traditional ML models has a great potential to promote the
performance of the model to identify the pulsar with the diagnostic
subplots as the input into the model. This scheme belongs to

an end-to-end learning model. The complex relationship between
the target (the identification results of the candidates) and the
inputs (four diagnostic subplots) can be directly described by just
one single layer without any intermediate processes or interme-
diate labels. Therefore, the end-to-end learning makes the CCNN
suitable for the online learning pipeline of the pulsar candidate
selection. By the way, for an online learning pipeline, the newly
confirmed candidates can be directly appended to the training
data set to continuously improve the classification accuracy of the
model.

The rest of this paper is organized as follows: the experimental
data and data pre-processing methods are described in the next
section. In Section 3, we presented the components and detailed
structure of the CCNN. According to the direction of the concatenate
operation, CCNN can be subdivided into Horizontal CCNN (H-
CCNN) and Vertical CCNN (V-CCNN). Their performances are
investigated and compared with the available methods in Section 4.
We conclude and discuss the future work of pulsar candidate
selection for FAST in the final section.

2 DATA

The work is conducted for the Commensal Radio Astronomy FasT
Survey (CRAFTS; Li et al. 2018). CRAFTS is a drfit-scan survey
that aims at observing the entire visible sky of the FAST for H I

emission and search for the new pulsars utilizing the FAST L-band
Array of 19 beams (FLAN; Zhang et al. 2019). The early observation
data with labels (Wang et al. 2019b) for pulsar searching from
CRAFTS has been public on https://github.com/dzuwhf/FAST lab
el data. This work uses this data set to train and test our model.

2.1 The information of the data set

The data set has been split into the training set and test set. The
training set consists of 837 real pulsars and 998 RFI candidates, and
these samples will be utilized to construct the classification model
for pulsar candidate selection. At the same time, the performance of
the model will be evaluated on the test set that contains 326 pulsar
samples and 13 321 RFI samples.

Each sample is processed by PRESTO (PulsaR Exploration and
Search Toolkit; Ransom 2001; Ransom, Eikenberry & Middleditch
2002), which is a typical software for pulsar search and analysis.
After that, the dedispersed and folded three-dimensional (3D;
time interval, phase, channel frequency) data are stored in a pfd
format file as well as some data descriptions. Summing the data
along the frequency channels and time intervals generates the time
versus phase plot and frequency versus phase plot. Meanwhile,
summing the data along both the time intervals and frequency
channels generates the pulse profile histogram. In addition, the
last diagnostic subplot is the DM curve, which is a plot of the
DM trials against the corresponding reduced χ2 values. Fig. 1
presents the diagnostic subplots of a pulsar candidate and a non-
pulsar candidate, respectively. For a real pulsar, there should be
usually one or more vertical lines in the time versus phase plot
and frequency versus phase plot, which indicates a broadband and
pulsed signal lasted during the observation time. At the same time,
the profile usually contains one or more peaks and the DM curves
should peak at a non-zero value. In general, these four diagnostic
subplots constitute the fundamental information for the experts to
classify the candidates. As a result, they serve as inputs into our
model.
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Figure 1. Two examples of the pulsar and non-pulsar candidates. For the pulsar candidate, there is a narrow peak in the pulse profile plot and a persistent
vertical line both in the time versus phase plot and the frequency versus phase plot. And meanwhile, DM curve peaks at a non-zero value. For the non-pulsar
candidate, there are a broad peak in the pulse profile plot, and what is more, the pulse only appears in several frequency channels, which indicates that this
signal is the RFI.

2.2 Data preprocessing

Before feeding the diagnostic subplots into the model, we have to
process the data since there is inconsistency among the candidates,
such as the size, scale, and so on. These inconsistent factors are
useless for identifying the pulsar candidates. What is worse, they
have the potential to make negative effects on the training process
and performance of the model. Therefore, it is necessary to eliminate
these factors before training the model.

Considering the phase-related bias resulting from the peak far
away from the centre of the plot (Zhu et al. 2014), we shift the
strongest peak to the centre phase within the subplots except for
the DM curve since the position of the peak is an important pattern
for pulsar candidate selection. As a result, the model can pay more
attention to the presence of the patterns regardless of their position,
which is not the necessary factor for identification.

Four diagnostic subplots are all saved as 1D or 2D data arrays,
but the size of these arrays vary from candidate to candidate for a
certain type of subplots. For the majority of ML algorithms, the size
of the inputs should be fixed. Therefore, we have to resize the data
arrays to a uniform size: 64 for the pulse profile, 64 × 64 for the
time versus phase plot and frequency versus phase plot, and 200 for
the DM curve. The plots whose size is smaller than the uniform size
are interpolated and those with larger size are scrunched instead
of being downsampled to avoid losing important information. In
addition, we normalize the data so that they range from 0 to 1 by
using min–max normalization. The normalization can accelerate
the convergence of the gradient descent during training (Ioffe &
Szegedy 2015). On the other hand, normalization does not do any
harm to the performance of the model in theory because we just
want to extract some certain patterns (e.g. peaks, stripes, and so on)
from the plots, regardless of the exact values in curves or images.

In order to focus the attention of the concatenate layer on the
difference between the real pulsar and non-pulsar candidates, we
generate some negative samples by replacing only one of the
subplots of the pulsar candidates from the training data set with a
corresponding ‘non-pulsar subplot’. For example, we firstly choose
a pulsar candidate from the training data set randomly. Secondly,

Figure 2. An example for generating a new false positive sample by
modifying the DM curve coming from a pulsar candidate, while other
subplots remains unchanged.

the DM curve is modified by removing the part of the curve before
the peak and interpolate the rest part of the curve to the uniform
size without modifying the other diagnostic subplots (e.g. Fig. 2). In
this way, the generating DM curve peaks at the zero and the newly
generated sample belongs to the non-pulsar category. In practice,
we can generate the new non-pulsar candidate by modifying any
one of the diagnostic subplots of the pulsar candidates except the
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Figure 3. The flowchart of the preprocessing.

pulse profile since it can be obtained by summing the frequency
versus phase plot over the time intervals.

In summary, the flowchart of the data preprocessing is shown in
Fig. 3. After that, the processed diagnostic subplots are served as
the inputs into the proposed CCNN.

3 MODEL

In this section, the related fundamental components of CCNN are
first reviewed, including the fully connected layer, convolutional
layer, global pooling layer, and then the whole architecture of the
model is introduced in detail.

3.1 Fully connected layer

Fully connected layer is a basic component of the Artificial
Neural Network (ANN), which is inspired by the biological neural
networks, the fundamental element of animal brains (Chen et al.
2019). An example architecture of this type of layer is shown in
Fig. 4.

Generally, a fully connected layer can be considered to be a
function composed of some simple mathematical operations, which
receive an array x ∈ RD as the input and output another array
h ∈ RN . In detail, all the neurons in the input layer are multiplied
by weights (also called synapses) and summed together and then
transformed via an activation function (Haykin 1998). Then, the ith
output can be expressed as

hi = σ (w�x + bi), (1)

where w ∈ Rd is a weight vector that shows the importance of each
input neuron, bi ∈ R is a bias value that allows to shift the function
up or down, and σ (·) is an activation function that decides whether a
neuron should be activated or not. Its motivation is to introduce non-
linearity into the output of a neuron. And then the neural network is
able to learn and represent the complex relationship between input

+

...

...

Figure 4. An example architecture of the fully connected layer. The left-
hand layer represents its input layer and the right-hand layer denotes the
output layer. The lines connecting these two layers with the arrows pointing
from the left- to right-hand side indicates the weights.

Figure 5. An example architecture of the 2D convolutional layer. The light
blue cube represents the input feature map, the blue small cube denotes the
filter, and the light orange cube represents the output feature maps. Each
neuron in the output layer is obtained by multiplying the corresponding
elements of the input feature maps and filter.

data and output target. The activation is triggered by a high similarity
between the input data and the patterns stored in weights. Actually,
the patterns are unknown or are difficult to be exactly described by
humans. Therefore, the weights are initialized randomly. In order to
find the correct patterns between the input data and their expected
output, it is necessary to adjust the weights. The process of weights
adjustment is referred to as learning (Yegnanarayana 1994). The
goal of learning is to minimize the difference between the neural
network outputs and their expected labels. Usually, this process is
implemented by a back-propagation (BP) algorithm (Rumelhart,
Hinton & Williams 1986).

The structure of the model (e.g. the number of the neurons of
fully connected layer and the type of activation function) is chosen
by the user and is built by using a simplest one to precisely describe
the relationship between the inputs and targets in order to avoid
overfitting (Sarle 1996).
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3.2 Convolutional layer

Zhu et al. (2014) creatively introduced 2D-CNN to the pulsar
candidate selection. The design of 2D-CNN (shown in Fig. 5) is
inspired by the work of Hubel and Wiesel who discovered that the
cats’ visual cortexes contain neurons that individually respond to
edges and bars of particular orientations within a small region of
the visual field (Hubel & Wiesel 1959). The ability of neurons to
recognize patterns is unaffected by position shifts.

The working mechanism of the convolutional layer is like one
uses a flashlight to slide over a big image from the left- to right-hand
side, and top to bottom. Technically, this flashlight is referred to as
filters, which actually is a collection of weight vectors, and the area
shot by the flashlight is called the receptive field. The output from a
neuron is obtained by multiplying the elements of the filter with the
image pixels the values in the filter with the original pixel values of
the image within the corresponding receptive field and adding all
these multiplications together. The activation of the output neuron
is triggered if the particular pattern (e.g. the peak and the stripes in
diagnostic subplots) are detected from the corresponding receptive
field. When the sliding is over, the feature maps (or called activation
maps) are obtained. The different filters are used to detect different
and simple patterns. As the network going deeper, the patterns
extracted by CNN become more complex.

In this work, we not only use the 2D-CNN to extract patterns on
the time versus phase plot and frequency versus phase plot, but also
process the pulse profile and DM curve using 1D-CNN. The 1D-
CNN has been widely applied in time-series data, 1D astronomical
signals, etc. Pearson, Palafox & Griffith (2018) show the prominent
ability of the 1D-CNN, and Zhu et al. (2014) demonstrate the
outstanding performance of 2D-CNN for the time versus phase
plot and frequency versus phase plot in pulsar candidate selection.
Therefore, the application of 1D-CNN for the other subplots instead
of the traditional ML models has the potential of improving the
performance of pulsar candidate selection theoretically.

3.3 Global pooling layer

There is usually a pooling layer in the back of a convolutional
layer. The intuitive reasoning behind the pooling layer is that the
emphasis of the CNN is to detect the existence of some specific
patterns within the image regardless of their exact positions for a
classification task. The application of the pooling layer contributes
to reducing the number of the parameters thereby decreasing the
computational costs. On the other hand, it can effectively alleviate
the overfitting problem.

Pooling layer downsamples feature maps by summarizing each
map. Two common pooling methods are average pooling and max
pooling. They summarize the average presence of a feature and the
most activated presence of a feature, respectively.

In this work, we apply the global pooling, which samples the
entire feature map to a single value instead of down sampling
patches of the input feature map as the traditional pooling operation
does. On the one hand, the global pooling further reduced the
number of the training parameters to improve the calculating speed
and mitigate overfitting. On the other hand, after the traditional
pooling layer, there is usually a reshape operation that transforms
the multidimensional arrays into the one-dimensional vectors before
being input into the fully connected layer. This reshape operation
may destroy the spatial information in the feature maps. In contrast,
the global pooling is more native to the convolution structure,
and Lin, Chen & Yan (2013) have demonstrated that the global

pooling has a better performance in some classification tasks than
the traditional pooling.

3.4 Concat Convolutional Neural Network

In this work, we use four CNNs to extract features respectively
from four diagnostic subplots: two 1D-CNNs, respectively, for the
pulse profile and DM curve, and two 2D-CNNs, respectively, for the
time versus phase plot and frequency versus phase plot. Considering
that the extracted features, such as peaks or the vertical stripes, have
some simple pattern, the CNN for each subplot in this work consists
of only three convolutional layers and is followed by a global max
pooling layer to summarize the information of the feature maps and
output a 1D vector. And then, a concatenate layer is applied to merge
the information coming from four different diagnostic subplots. The
proposed scheme is referred to as CCNN, and this work used two
examples of the CCNN: H-CCNN (Fig. 6a) and V-CCNN (Fig. 6b).

The difference between H-CCNN and V-CCNN is their concat
type and subsequent layers. In detail, the former model concatenates
the four vectors extracted from the four diagnostic subplots one
after another in a horizontal direction to form a long 1D vector,
while the latter concatenates them in a vertical direction to generate
a 2D matrix. After that, the final two layers of H-CCNN are
the fully connected layer and the activation of the last one is a
sigmoid function. The sigmoid activation function computes the
probability of a candidate being pulsar. The subsequent layers of
V-CCNN are several convolutional layers and one global average
pooling layer that averages each feature maps, and the resulting
vector of the global average pooling layer is fed into a softmax
layer (Lin et al. 2014). Two neurons in the output layer stand for
the probabilities that the candidate is of pulsar and non-pulsar,
respectively. The choice of activation function for the last layer
and the parameters for the convolutional layers of H-CCNN and
V-CCNN were determined by their F1 score performance. This
work investigated the sigmoid and softmax functions for finding the
appropriate activation. And the output of sigmoid function is a real
value, denoted by p for convenience, between 0 and 1. This value
represents the probability of a candidate being pulsar. Therefore, the
probability of the candidate being a non-pulsar can be calculated by
1 − p. Brief architectures of CCNN (H-CCNN and V-CCNN) are
presented in Fig. 6.

The configuration of CCNN (e.g. the number and size of the
filters, the type of the global pooling, the number of the neurons in
the fully connected layer, and the type of the activation function,
etc.) is determined by grid search based on 10-fold cross-validation
(James et al. 2013). First, the training data set is shuffled randomly
and split into 10 groups. Each unique group is taken as the
validation set one after another and the corresponding remaining
data are served as the training set that is used to train the CCNN.
The performance is evaluated by computing the F1 score on the
validation set. Finally, the hyperparameters are determined based
on the model with the highest F1 score. As a result, the optimal
structure of CCNN is shown in Fig. 6, and the model is trained by
an Adam optimizer (Kingma & Ba 2014) with a learning rate of
0.001 and batch size of 64.

The CCNN is implemented using KERAS (Chollet et al. 2015)
with the TENSORFLOW backend (Abadi et al. 2015).1 KERAS is a
high-level neural network API written in PYTHON and it focuses
on enabling fast experimentation instead of coding ability. This

1https://github.com/xrli/CCNN/
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Figure 6. The architecture of CCNN. The input subplots of CCNN from the top to bottom panel are individually the pulse profile, DM curve, the frequency
versus phase plot, and the time versus phase plot whose sizes are 64, 200, 64 × 64, and 64 × 64, respectively. The output sizes of the 1D convolutional layer
are L × N and the output sizes of the 2D convolutional layer are H × W × N, where L denotes the length of the tensors, H and W are the height and width of the
tensors, and N is the number of the feature maps. The output layer of the H-CCNN and V-CCNN are different due to the dissimilar operation in concatenate
layer and their subsequent layers. The former model outputs the probability of a candidate being pulsar, while the output layer of the latter model contains two
neurons, respectively, representing the probabilities of a candidate being pulsar and non-pulsar. GMP means global max pooling layer, Concat represents the
concatenate layer and FC is the abbreviation of fully connected layer.
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